

Unified Facilities Guide Specifications

USACE / NAVFAC / AFCESA / NASA UFGS-03 31 29 (February 2010)

Preparing Activity: NAVFAC Superseding

UFGS-03 31 29 (November 2009)

UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated April 2010

Submarine Base | GROTON, CT | Pier 5 Replacement | NORFOLK, VA

Kilo Wharf Extension | U.S. Navy, Guam

Salinity of Seawater Around the World

From http://en.wikipedia.org/wiki/Seawater

The Development of the UFGS

Performance Specifications

What is a Performance Specification?

A performance specification is a set of instructions that outlines the functional requirements for hardened concrete depending on the application. The instructions should be clear, achievable, measurable and enforceable.

C. Lobo, L. Lemay, K. Obla (2005), The Indian Concrete Journal, V. 79, p. 13-17.

In MPa (or Psi)?

In Coulombs?

In years?

ASTM C1202 As A Performance Indicator?

Clear Definition of Expectations

- "Service life" is the functional target performance expectation for the various reinforced concrete elements. This has been defined as 75 years before major restoration with minimal maintenance.
- Major restoration is defined as repairs requiring jack hammering or any destructive means of concrete preparation.

The Concrete Durability Matrix

Two Approaches

Avoidance of Deterioration Approach Full Probabilistic Method

The approach varies with the type of degradation phenomenon considered

- FIB Document N-34 Model Code For Service Life Design
- ISO 2394 General principles on reliability for structures

The Calculation Tool - Coupled Phenomena

The Calculation Tool - Coupled Phenomena

Internal degradation + moisture and heat transfer

Contamination and chemical degradation problems

Corrosion initiation + propagation problems

The Bottom-Up Approach

Volume of Permeable Voids

ASTM C642

Moisture Permeability

ASTM C1792

Diffusion of Contaminants

ASTM C1202-Modified

Degradation Curves - Top Deck

Independent Validation of Results

The Calculation Tool

Life-Cycle Cost Analysis

Option	Cost of Interventions	Value at End of Contract	Net Value (NV)
1 - 75 mm repair in 2057	\$817,356	\$5,709,351	\$4,891,995
2 - 50 mm repair in 2036	\$796,620	\$3,070,917	\$2,274,297
3 - Cathodic protection in2036 (impressed current)	\$1,349,148	\$3,478,048	\$2,128,900

The Three-Step Approach

1

DESIGN

Feasibility Study Service life objectives Local exposure conditions Local materials

Specification
Client expectations
Methodologies

3

CONSTRUCTION

Quality Assurance
Testing and metrics
Evaluate variations
Design criteria validation

Performance Evaluation Tool

APPROVAL
Concrete submittal
Trial production
Mock-up structure

Determination of Concrete Variability

U.S. Navy Projects - UFGS

New Bridge on Saint Lawrence River

A 125-year service life required for the most critical structural elements

- Severe exposure conditions:
 - De-icing salts
 - Freezing and thawing cycles
 - Wetting and drying cycles
 - Abrasion
- Pre-cast and cast-in place elements
- Massive and relatively thin elements
- Different types of steel
- Different placement methods
- Different curing methods

Thank You!

Validation of The Calculation Tool

Chloride Contamination Analysis

Resistivity and Corrosion Rate Analysis

Corrosion Rate Analysis (mpy)	# of readings	%	Level
Values that are < 0.0457	0	0%	Passive
Values between 0.0457 & 0.2285	1	8%	Low
Values between 0.2286 & 0.4578	5	42%	Medium
Values >0.4578	6	50%	High
Total Number of readings	12	100%	

The Calculation Tool - Degradation Curves

The Bottom-Up Approach

Kilo Wharf Extension | U.S. Navy, Guam

1CO Technologies Inc. 2016 – All Rights Reserved

Kilo Wharf Extension | U.S. Navy, Guam

Kilo Wharf Extension U.S. Navy, Guam

On-Site Quality Control

Kilo Wharf Extension U.S. Navy, Guam